Preliminary communication

REACTIONS OF HYDRIDO(CYCLOOCTA-1,5-DIENE)TRIS(PHOSPHINE) RUTHENIUM(II) CATIONS WITH 1,3-DIENES: FORMATION OF AGOSTIC η^3 -ENYL SPECIES [Ru(η^3 -ENYL)L₃]⁺

TERENCE V. ASHWORTH, ANTHONY A. CHALMERS, ELSIE MEINTJIES, HESTER OOSTHUIZEN, and ERIC SINGLETON*

National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria 0001 (Republic of South Africa)

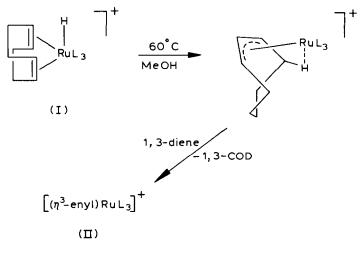
(Received July 25th, 1984)

Summary

¹H and ¹³C NMR spectra have shown that the products of the reactions of [RuH(cycloocta-1,5-diene)L₃]⁺ (I, L = PMe₂Ph) with 1,3-dienes are η^3 -enyl species and not hydrido(1,3-diene) complexes as inferred previously; similar complexes, with phosphine ligands other than PMe₂Ph, have been prepared.

In an earlier paper [1] we reported the X-ray diffraction study of the product of the reaction of 1,3-butadiene with $[RuH(cod)L_3][PF_6]$ (I) (cod = cycloocta-1,5-diene, L = PMe₂Ph). Our interpretation of the results of the X-ray study led us to assign the hydrido(diene) formulation to this and the cyclohexa-1,3-diene product, although some doubt as to the reliability of the structural results was acknowledged. Our recent work [2] on the formation of η^3 -cyclooctenyl species from I (L = a phosphorus donor ligand) prompted us to investigate the solution structures of the products, II, of the 1,3-diene reactions using variable temperature NMR techniques.

Complexes II were obtained by treatment (60°C) of suspensions of I (L = PMe_2Ph , PMe_3 , $P(OMe)_2Ph$ and $P(OMe)Ph_2$) in methanol with an excess of the 1,3-dienes (cyclohexa-1,3-diene and cyclohepta-1,3-diene)*. The reaction with 1,3-butadiene was successful only with I (L = PMe_2Ph) as reported previously [1]. The cyclooctadiene was liberated as the 1,3-isomer thus indicating the intermediacy of the η^3 -cyclooctenyl complex in the reaction sequence as shown in Scheme 1.


^{*}The products of the reactions were obtained as analytically pure microcrystalline solids, except that the reaction of I (L = PMe_2Ph) with cyclohepta-1,3-diene gave a mixture of IIc and $[Ru(\eta^5-C_7H_9)(PMe_2Ph)_3-[PF_6]]$ [6].

2 3 3 3 2 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1	(IIa) (IIb) (IIb)	$[Ru] \equiv RuL_3; IIa-IIc, L = PMe_2Ph; IId, L = P(OMe)_2Ph$		H(1) H(2) H(3) H(4) T C(1) C(2) C(3) C(4) T P P J (Hz) (K) (K)	5.25 4.85 –3.85 0.65 <i>anti</i> , 253 94.9 67.2 2.8 41.2 293 38.9 –3.2 27 2.05 <i>syn</i>	5.05 4.05 1.65 exo, 0.75, 202 90.5 64.9 24.0 17.6 303 34.3 3.5 36 -4.25 endo 0.90	4.80 3.80 1.35 exo, 1.00 223 91.7 62.6 20.6 22.5 Signals obscured by [Ru- -3.85 endo 1.20 $(\eta^5 - C_7 H_9)(PMe_2Ph)_3][PF_6]$ [6]	4.7 4.0 1.50 exo 1.30 193 96.3 63.5 19.4 22.6 second order -3.10 endo 1.10	
		L = PMe		H(2)		4.05		4.0	-
		a-IIc, 1		H(1)	5.25	5.05	4.80		
		1L ₃ ; IIa	H ¹	ч (K)	223	213	223	253	
		$[Ru] \equiv R_1$	Complex		IIa	qII	IIc	PII	

TABLE 1

NMR DATA^a FOR THE COMPLEXES II

C20

SCHEME 1

The low temperature NMR spectra of II ($L = PMe_2Ph$, enyl = butenyl, cyclohexenyl) are given in Table 1 and show that these complexes must be reformulated as η^3 -enyl species, in which there is an interaction between the ruthenium ion and the *endo*-CH bond adjacent to the allylic functional group. Thus, the number of ¹³C signals observed and their s.f.o.r.d.* multiplicities and chemical shifts are consistent [2] only with an allyl functional group. In addition, the high field signals observed in the ¹H NMR spectra of the complexes are characteristic of an agostic [3] $M \cdots H - C$ interaction.

Three fluxional processes could be identified from the variable temperature NMR studies of these complexes; (i) mutual exchange of the phosphorus donor ligands, (ii) a 1,2-metal migration [4] around one face (endo) of the carbocyclic ring, and (iii) the exchange [5] of the two endo- C_3H hydrogen atoms at the metal. In addition, the butenyl complex exhibited a fourth fluxional process, methyl group rotation, which was rapid at temperatures as low as 183 K. The exchange of the two endo- C_3H hydrogen atoms in the complex II (L = P(OMe)Ph₂, enyl = cycloheptenyl) reached the slow exchange limit at 183 K when observed at 500 MHz (δ (Ru····H-C) = -8.3). In contrast, the cyclohexenyl derivative of II (L = $P(OMe)Ph_2$) was still fluxional under these conditions. This result is not consistent with the data for $[Fe(enyl){P(OMe)_3}_3]^+$ complexes, where the barrier to the exchange process increases as the ring size decreases [5]. We are continuing with efforts to obtain spectra of the complexes at temperatures below -100°C. The solid state ¹³C NMR spectra are consistent with the allyl formulation, and the X-ray determination reported previously must therefore be erroneous. A redetermination of the structure at low temperature is underway.

Acknowledgement. We thank Bruker, West Germany, for the solid state spectra.

^{*}s.f.o.r.d. = single frequency of resonance decoupled.

References

- 1 T.V. Ashworth, E. Singleton, M. Laing and L. Pope, J. Chem. Soc., Dalton Trans., (1978) 1032.
- 2 T.V. Ashworth, A.A. Chalmers, E. Singleton and H.E. Swanepoel, J. Chem. Soc., Chem. Commun., (1982) 214; T.V. Ashworth, A.A. Chalmers, E. Meintjies, H. Oosthuizen and E. Singleton, Organometallics, 3 (1984) in press.
- 3 M. Brookhart and M.L.H. Green, J. Organomet. Chem., 250 (1983) 395.
- 4 M. Brookhart and A. Lukacs, Organometallics, 2 (1983) 649.
- 5 S.D. Ittel, F.A. Van-Catledge and J.P. Jesson, J. Amer. Chem. Soc., 101 (1979) 6905.
- 6 T.V. Ashworth, A.A. Chalmers, E. Meintjies, H. Oosthuizen, and E. Singleton, unpublished results.